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The concept of a primitive potential for the Schrödinger operator on the line was introduced in Dyachenko

et al. (2016, Phys. D, 333, 148–156), Zakharov, Dyachenko et al. (2016, Lett. Math. Phys., 106, 731–740)

and Zakharov, Zakharov et al. (2016, Phys. Lett. A, 380, 3881–3885). Such a potential is determined

by a pair of positive functions on a finite interval, called the dressing functions, which are not uniquely

determined by the potential. The potential is constructed by solving a contour problem on the complex

plane. In this article, we consider a reduction where the dressing functions are equal. We show that in

this case, the resulting potential is symmetric, and describe how to analytically compute the potential as a

power series. In addition, we establish that if the dressing functions are both equal to one, then the resulting

primitive potential is the elliptic one-gap potential.

Keywords: integrable systems; Schrödinger equation; primitive potentials.

1. Introduction

One of the fundamental insights underlying the modern theory of integrable systems is the discovery

of an intimate relationship between certain linear differential or difference operators, on one hand, and

corresponding nonlinear equations on the other. The first of these relationships to be discovered, and

arguably the most important one, is the link between the one-dimensional Schrödinger equation on the

real axis

−ψ ′′ + u(x)ψ = Eψ , −∞ < x < ∞, (1)

and the Korteweg–de Vries (KdV) equation

ut(x, t) = 6u(x, t)ux(x, t) − uxxx(x, t). (2)
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2 P. NABELEK ET AL.

The study of solutions of the KdV equation has proceeded hand-in-hand with an analysis of the spectral

properties of the Schrödinger operator that is applied to ψ on the left-hand side of the Schrödinger

equation (1).

There are three broad methods for constructing solutions of the KdV equation, based on restricting

the potentials of the Schrödinger operator. The inverse scattering method (ISM) allows us to construct

potentials, and hence solutions of the KdV equation, that are rapidly vanishing as x → ±∞. Such

potentials have a finite discrete spectrum for E < 0 and a doubly degenerate continuous spectrum

for E > 0, and a subset of them, corresponding to multisoliton solutions of the KdV equation, are

reflectionless for positive energies. The finite-gap method, on the other hand, constructs periodic and

quasi-periodic potentials of the Schrödinger operator (1) whose spectrum consists of finitely many

allowed bands, one infinite, separated by forbidden gaps. These potentials are reflectionless in the allowed

bands.

Both of these methods construct globally defined solutions of the KdV equation. The third method,

called the dressing method [1], constructs solutions locally near a given point on the (x, t)-plane. An

advantage of the method is that the constructed solutions can be quite general. However, the problem of

extending such solutions to the entire (x, t)-plane is a difficult one.

Our work is motivated by a pair of related questions. First, one can ask what is the exact relationship

between the ISM and the finite-gap method, and whether they can both be generalized by the dressing

method. It has long been known that multisoliton solutions of the KdV equation are limits of finite-gap

solutions corresponding to rational degenerations of the spectral curve. However, the converse relation-

ship, which would consist in obtaining finite-gap solutions as limits of multisoliton solutions, has not

been worked out. Additionally, one can ask which potentials of the Schrödinger operator, other than the

finite-gap ones, have a band-like structure.

In the articles [2–4], the second and third authors presented a method for constructing potentials of

the Schrödinger operator (1), called primitive potentials, that provide partial answers to these questions.

Primitive potentials are constructed by directly implementing the dressing method and can be thought

of as the closure of the set of multisoliton potentials. This procedure involves a reformulation of the

ISM that is inherently symmetric with respect to the involution x → −x, and the resulting primitive

potentials are non-uniquely determined by a pair of positive, Hölder-continuous functions, called the

dressing functions, defined on a finite interval.

In this article, we continue the study of primitive potentials. We consider primitive potentials defined

by a pair of dressing functions that are equal. Such potentials are symmetric with respect to the reflection

x → −x. We show that the contour problem defining symmetric primitive potentials can be solved

analytically, and we give an algorithm for computing the Taylor coefficients of a primitive potential. In

the case, when the dressing functions are both identically equal to 1, we show that the corresponding

primitive potential is the elliptic one-gap potential.

2. Primitive potentials

In this section, we recall the definition of primitive potentials, which were first introduced in the articles

[2–4] as generalizations of finite-gap potentials. Primitive potentials are constructed by taking the closure

of the set of N-soliton potentials as N → ∞, so we begin by summarizing the ISM as a contour problem

(see [5, 6]). The finite-gap method is symmetric with respect to the transformation x → −x, while the

ISM is not, so we give an alternative formulation of the ISM (in the reflectionless case) that takes this

symmetry into account.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/in
te

g
ra

b
le

s
y
s
te

m
s
/a

rtic
le

-a
b
s
tra

c
t/4

/1
/x

y
z
0
0
6
/5

5
4
3
0
6
9
 b

y
 g

u
e
s
t o

n
 0

7
 A

u
g
u
s
t 2

0
1
9



ON SYMMETRIC PRIMITIVE POTENTIALS 3

2.1 The inverse scattering method

We recall the ISM for the self-adjoint one-dimensional Schrödinger operator, following and using the

notation of [6]. The Schrödinger operator

L(t) = −
d2

dx2
+ u(x, t) (3)

acts on the Sobolev space H2(R) ⊂ L2(R). We suppose that the potential u(x, t) rapidly decays at infinity

when t = 0:

∫ ∞

−∞
(1 + |x|)(|u(x, 0)| + |ux(x, 0)| + |uxx(x, 0)| + |uxxx(x, 0)|) dx < ∞ (4)

and satisfies the KdV equation (2). Under this assumption, the spectrum of L(t) consists of an absolutely

continuous part [0, ∞) and a finite number of eigenvalues −κ2
1 , . . . , −κ2

N that do not depend on t. There

exist two Jost solutions ψ±(k, x, t) such that

L(t)ψ±(k, x, t) = k2ψ±(k, x, t), Im(k) > 0, (5)

with asymptotic behaviour

lim
x→±∞

e∓ikxψ±(k, x, t) = 1. (6)

The Jost solutions ψ± are analytic for Im k > 0 and continuous for Im k ≥ 0, and have the following

asymptotic behaviour as k → ∞ with Im k > 0:

ψ±(k, x, t) = e±ikx

(
1 + Q±(x, t)

1

2ik
+ O

(
1

k2

))
, (7)

where

Q+(x, t) = −
∫ ∞

x

u(y, t) dy, Q−(x, t) = −
∫ x

−∞
u(y, t) dy. (8)

The Jost solutions satisfy the scattering relations

T(k)ψ∓(k, x, t) = ψ±(k, x, t) + R±(k, t)ψ±(k, x, t), k ∈ R, (9)

where T(k) and R±(k, t) are the transmission and reflection coefficients, respectively. These coefficients

satisfy the following properties:

Proposition 1 The transmission coefficient T(k) is meromorphic for Im k > 0 and is continuous for

Im k ≥ 0. It has simple poles at iκ1, . . . , iκN with residues

Resiκn T(k) = iµn(t)γn(t)
2, (10)
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4 P. NABELEK ET AL.

where

γn(t)
−1 = ||ψ+(iκn, x, t)||2, ψ+(iκn, x, t) = µn(t)ψ−(iκn, x, t). (11)

Furthermore,

T(k)R+(k, t) + T(k)R−(k, t) = 0, |T(k)|2 + |R±(k, t)|2 = 1. (12)

If we denote R(k, t) = R+(k, t), R(k) = R(k, 0), and γn = γn(0), then

T(−k) = T(k), R(−k) = R(k), k ∈ R, (13)

|R(k)| < 1 for k 	= 0, R(0) = −1 if |R(0)| = 1, (14)

and the function R(k) is in C2(R) and decays as O(1/|k|3) as |k| → ∞. The time evolution of the

quantities R(k, t) and γn(t) is given by

R(k, t) = R(k)e8ik3t , γn(t) = γne4κ3
n t . (15)

The collection (R(k, t), k ≥ 0; κ1, . . . , κN , γ1(t), . . . , γN(t)) is called the scattering data of the

Schrödinger operator L(t). We encode the scattering data as a contour problem in the following way.

Consider the function

χ(k, x, t) =
{

T(k)ψ−(k, x, t)eikx, Im k > 0,

ψ+(−k, x, t)eikx, Im k < 0.
(16)

Proposition 2 (See Theorem 2.3 in [6]) Let (R(k); κ1, . . . , κN , γ1, . . . , γN) be the scattering data of the

Schrödinger operator L(0). Then the function χ(k, x, t) defined by (16) is the unique function satisfying

the following properties:

(1) χ is meromorphic on the complex k-plane away from the real axis and has non-tangential limits

χ±(k, x, t) = lim
ε→0

χ(k ± iε, x, t), k ∈ R (17)

on the real axis.

(2) χ has a jump on the real axis satisfying

χ+(k, x, t) − χ−(k, x, t) = R(k)e2ikx+8ik3tχ−(−k, x, t). (18)

(3) χ has simple poles at the points iκ1, . . . , iκN and no other singularities. The residues at the poles

satisfy the condition

Resiκn χ(k, x, t) = icne−2κnx+8κ3
n tχ(−iκn, x, t), cn = γ 2

n . (19)
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ON SYMMETRIC PRIMITIVE POTENTIALS 5

(4) χ has the asymptotic behaviour

χ(k, x, t) = 1 +
i

2k
Q+(x, t) + O

(
1

k2

)
, |k| → ∞, Im k 	= 0. (20)

The function χ is a solution of the equation

χ ′′ − 2ikχ ′ − u(x)χ ′ = 0, (21)

and the function u(x, t) given by the formula

u(x, t) =
d

dx
Q+(x, t) (22)

is a solution of the KdV equation (2) satisfying condition (4).

Remark 3 We note that the contour problem for χ is not symmetric with respect to the transformation

k → −k. The reflection coefficient R(k) satisfies the symmetry condition (13), however, χ is required

to have poles in the upper k-plane and be analytic in the lower k-plane. This asymmetry comes from the

definition (5) of the Jost functions and is therefore ultimately of physical origin: in the ISM, we consider

a quantum-mechanical particle approaching the localized potential from the right, in other words the

method is not symmetric with respect to the transformation x → −x. We will see in the next section that

this asymmetry prevents us from directly relating the ISM to the finite-gap method.

It is common (see [6]) to instead consider the two-component vector [χ(k) χ(−k)]. The jump

condition on the real axis (18) is then replaced by a local Riemann–Hilbert problem. This Riemann–

Hilbert problem includes poles on the upper and lower k-planes, but the transformation k → −k merely

exchanges the components, which does not fix the asymmetry.

Remark 4 It is possible to relax the constraint |R(k)| < 1 for k 	= 0 and allow |R(k)| to be equal to

1 inside two symmetric finite intervals v < |k| < u. In this case, the Riemann–Hilbert problem (18) is

still uniquely solvable and generates a potential of the Schrödinger operator and a solution of the KdV

equation. However, in this case condition (4) is not satisfied, and the potential is not rapidly decaying, at

least when x → −∞. This extremely interesting case is completely unexplored.

2.2 N-soliton solutions

We now restrict our attention to the reflectionless case, in other words we assume that R(k) = 0. In this

case, the function χ has no jump on the real axis and is meromorphic on the entire k-plane with simple

poles at the points iκ1, . . . , iκN . Hence Proposition 2 reduces to the following.

Proposition 5 Let (0; κ1, . . . , κN , γ1, . . . , γN) be the scattering data of the Schrödinger operator L(0) with

zero reflection coefficient. Then the function χ(k, x, t) defined by (16) is the unique function satisfying

the following properties:

(1) χ is meromorphic on the complex k-plane with simple poles at the points iκ1, . . . , iκN and no other

singularities, and its residues satisfy condition (19).

(2) χ has the asymptotic behaviour (20) as |k| → ∞.
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6 P. NABELEK ET AL.

The corresponding solution u(x, t) of the KdV equation (2), given by formula (22), is known as the

N-soliton solution. Finding this solution is a linear algebra exercise. If χ is expressed in terms of its

residues

χ = 1 +
N∑

n=1

χn

k − iκn

, (23)

then plugging this into equation (19) gives a linear equation

χn + cne−2κnx+8κ3
n t

N∑

m=1

χm

κn + κm

= cne−2κnx+8κ3
n t . (24)

Let A be the determinant of this system:

A =
∑

I⊂{1,...,N}

∏

(m,n)⊂I , m<n

(κm − κn)
2

(κm + κn)2

∏

m∈I

qme−2κmx+8κ3
m t , qm =

cm

2κm

> 0. (25)

Then the corresponding N-soliton solution of the KdV equation (2) is

u(x, t) = −2
d2

dx2
log A. (26)

2.3 The na¨ıve limit N → ∞

The articles [2–4] were motivated by the following question. There exists a family of solutions of the KdV

equation, called the finite-gap solutions, that are parametrized by the data of a hyperelliptic algebraic

curve with real branch points and a line bundle on it. The solutions are given by the Matveev–Its formula

u(x, t) = −2
d2

dx2
ln �(Ux + Vt + Z|B), (27)

where �(·|B) is the Riemann theta function of the hyperelliptic curve, and U, V and Z are certain vectors.

The solution u(x, t) is quasi-periodic in x and in t. It is well known that the N-soliton solutions of the KdV

equation (26) can be obtained from the Matveev–Its formula by degenerating the hyperelliptic spectral

curve to a rational curve with N branch points. Is it possible, conversely, to obtain the Matveev–Its formula

(27) as some kind of limit of N-soliton solutions (26) when N → ∞?

We may attempt to na¨ıvely pass to the limit N → ∞ in (26) in the following way. Let [a, b] be an

interval on the positive real axis, let R1 be a positive Hölder-continuous function on [a, b], and let µ be a

non-negative measure on [a, b]. Consider the following integral equation

f (p, x, t) +
R1(p)

π
e−2px+8p3t

∫ b

a

f (q, x, t)

p + q
dµ(q) = R1(p)e−2px+8p3t (28)

imposed on a function f (p, x, t), where p ∈ [a, b]. Let a = κ1 < κ2 < · · · < κN = b be a partition of

[a, b] uniformly approximating µ. Replacing the above integral with the corresponding Riemann sum,
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ON SYMMETRIC PRIMITIVE POTENTIALS 7

and denoting cn = R1(κn)(b − a)/πN and χn = f (κn)(b − a)/πN , we obtain equation (24). Hence

equation (28) can be seen as the limit of (24) as N → ∞.

It is easy to show that (28) has a unique solution, and that the corresponding function

u(x, t) = −2
d

dx

∫ b

a

f (p, x, t)dµ(p) (29)

is a bounded solution of the KdV equation, satisfying the condition −2b < u < 0. The solution is

oscillating as x → −∞, but as x → +∞ it is clear that f (p, x, t) → R(k)e−2kx+8k3t , hence u(x, t) decays

exponentially. In other words, u(x, t) can be viewed as a superposition of an infinite number of solitons

uniformly bounded away from +∞. In particular, no solution obtained in this way will be an even

function of x at any moment of time. It is therefore impossible to obtain the finite-gap solutions given by

the Matveev–Its formula (27) in this way, since these solutions are not decreasing as x → +∞. This lack

of symmetry is due to the formulation of the ISM (see Remark 3). These observations were earlier made

by Krichever [7], and a rigorous study of the properties of such solutions, showing the above results, was

undertaken by Girotti et al. [8].

2.4 Symmetric N-soliton solutions

In this section, we consider what happens if we try to impose by hand symmetry with respect to the spatial

involution x 
→ −x at t = 0. We recall that an N-soliton solution of the KdV equation (26) is determined

by N distinct positive parameters κ1, . . . , κN and N additional positive parameters q1, . . . , qN .

Proposition 6 Let κ1, . . . , κN be distinct positive numbers, and let

qn =

∣∣∣∣∣
∏

m 	=n

κn + κm

κn − κm

∣∣∣∣∣ , n = 1, . . . , N . (30)

Then the N-soliton solution u(x, t) of the KdV equation given by (26) is symmetric at time t = 0:

u(−x, 0) = u(x, 0). (31)

Proof. At time t = 0, the function A(x) = A(x, t) is equal to

A(x) = 1 + q1e−2κ1x + · · · + qN e−2κN x + · · · + (q1 · · · qN)
∏

m<n

(κm − κn)
2

(κm + κn)2
e−2(κ1+···+κN )x.

Denote 	 = κ1 + · · · + κN . We observe that the function Ã(x) = e	xA(x) is symmetric: Ã(−x) = Ã(x).

Therefore, so is the corresponding solution of the KdV equation:

u = −2
d2

dx2
log A = −

d2

dx2
log Ã. �

We now observe that if we attempt to pass to the limit N → ∞, for example by setting κn =
a + (b − a)n/N , then the coefficients qn given by (30) have small denominators and diverge. Therefore,

we cannot obtain finite-gap solutions by this method.
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8 P. NABELEK ET AL.

2.5 From the ISM to the dressing method.

One of the main results of the articles [2–4] is a generalization of the ISM within the framework of the

dressing method. This construction allows us to take the N → ∞ limit of the set of N-soliton solutions

and obtain finite-gap solutions. We briefly describe this generalization.

An N-soliton solution is given by Eqs. (25) and (26), where the cn and the κn are the scattering data of

a reflectionless potential and are therefore positive. However, formally these equations make sense under

the weaker assumption that κm + κn 	= 0 for all m and n and that cn/κn are positive. The corresponding

function χ has poles on both the positive and the negative parts of the imaginary axis.

Proposition 7 Let κ1, . . . , κN , c1, . . . , cN be nonzero real numbers satisfying the following conditions:

(1) κm 	= ±κn for m 	= n.

(2) cn/κn > 0 for all n.

Then there exists a unique function χ(k, x, t) satisfying the following properties:

(1) χ is meromorphic on the complex k-plane with simple poles at the points iκ1, . . . , iκN and no other

singularities, and its residues satisfy condition (19).

(2) χ has the asymptotic behaviour (20) as |k| → ∞.

The function u(x, t) given by Eqs. (25) and (26) are a solution of the KdV equation (2).

We emphasize that, for a given N , the set of solutions of the KdV equation obtained using this

proposition is still the set of N-soliton solutions. Specifically, one can check that the solution given by

(25) and (26) for the data (κ1, . . . , κN , c1, . . . , cN) are the N-soliton solution given by the scattering data

(|κ1|, . . . , |κN |, c̃1, . . . , c̃N), where

c̃m = cm

∏

n: κn<0

(
κm − κn

κm + κn

)2

if κm > 0, c̃m = −
4κ2

m

cm

∏

n: κn<0, n 	=m

(
κm − κn

κm + κn

)2

if κm < 0. (32)

In other words, a N-soliton solution with a given set of positive parameters κ1, . . . , κN and positive phases

c1, . . . , cN is described by Proposition 7 in 2N different ways, by choosing the signs of the κn arbitrarily

and adjusting the coefficients cn using the above formula.

We now give an informal argument why this alternative description of N-soliton potentials allows us

to obtain finite-gap potentials in the N → ∞ limit. In the previous two sections, we made two attempts

to use formulas (25) and (26) with κn > 0 to produce N-soliton solutions with large N . We can either

keep the qn bounded, in which case all solitons end up on the left half-axis, or symmetrically distribute

the solitons about x = 0, in which case the qn (or, alternatively, the cn) need to be large.

To obtain a symmetric distribution of N solitons using Proposition 7, we choose, as in Section 2.4, a

set of parameters κn > 0, and set the phases qn according to (30). We then change the signs of half of the

κn, and change the cn according to Eq. (32). The resulting cn will be bounded for large N , enabling us to

take the N → ∞ limit.
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ON SYMMETRIC PRIMITIVE POTENTIALS 9

2.6 Primitive potentials

In the articles [2–4], the second and third authors considered a contour problem that can be viewed as the

limit of Proposition 7 as N → ∞.

Proposition 8 Let 0 < k1 < k2, and let R1 and R2 be positive, Hölder-continuous functions on the

interval [k1, k2]. Suppose that there exists a unique function χ(k, x, t) satisfying the following properties:

(1) χ is analytic on the complex k-plane away from the cuts [ik1, ik2] and [−ik2, −ik1] on the imaginary

axis, and has non-tangential limits

χ±(ip, x, t) = lim
ε→0

χ(ip ± ε, x, t), p ∈ (−k2, −k1) ∪ (k1, k2) (33)

on the cuts.

(2) χ has jumps on the cuts satisfying

χ+(ip, x, t) − χ−(ip, x, t) = iR1(p)e−2px+8p3t[χ+(−ip, x, t) + χ−(−ip, x, t)], (34)

χ+(−ip, x, t) − χ−(−ip, x, t) = −iR2(p)e2px−8p3t[χ+(ip, x, t) + χ−(ip, x, t)], (35)

for p ∈ [k1, k2].
(3) χ has asymptotic behaviour at infinity

χ(k, x, t) = 1 +
i

2k
Q(x, t) + O

(
1

k2

)
, |k| → ∞, Im k 	= 0. (36)

(4) There exist constants C(x, t) and α < 1 such that near the points ±ik1 and ±ik2 the function χ

satisfies

|χ(k, x, t)| <
C(x, t)

|k ∓ ikj|α
, k → ±ikj, j = 1, 2. (37)

Then the function u(x, t) given by the formula

u(x, t) =
d

dx
Q(x, t) (38)

is a solution of the KdV equation (2).

We call solutions of the KdV equation obtained in this way primitive solutions. For fixed moments

of time, we obtain primitive potentials of the Schrödinger operator (1).

Remark 9 Condition (37) does not appear in the articles [2–4] and is an oversight of the authors. It is

necessary, because we consider dressing functions R1 and R2 that do not vanish at k1 and k2. For such

functions χ may have logarithmic or algebraic singularities at the endpoints. Condition (37) is needed
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10 P. NABELEK ET AL.

to exclude trivial meromorphic solutions of the Riemann–Hilbert problem, having poles at ±ikj and no

jump on the cuts.

We also note that formulas (34) and (35) differ from the ones in [2–4] by a factor of π , this now seems

to us to be a more natural normalization of the dressing functions R1 and R2.

Remark 10 There is a simple observation that justifies the need to include poles in both the upper and

lower half-planes when producing a finite-gap potential as a limit of N-soliton potentials as N → ∞.

The spectrum of a N-soliton potential determined by {κn, cn}N
n=1 is purely simple for the negative energy

values E = −κ2
n , and doubly degenerate for E > 0. Therefore, a limit as N → ∞ of N-soliton solutions

with poles in the upper half-plane will have a simple spectrum E ∈ [−k2
2 , −k2

1 ] (in the one band case) and

a doubly degenerate spectrum for E > 0. This is precisely the structure of the spectrum of a one-sided

primitive potential having R2 ≡ 0, which limits to a finite-gap solution as x → −∞, but a trivial solution

as x → ∞.

A finite-gap potential, on the other hand, has a doubly degenerate continuous spectrum on the interior

of its bands, and a simple continuous spectrum on the band ends. To produce a finite-gap potential as a

limit of N-soliton potentials as N → ∞, we need to include poles in both half-planes, so that in the limit

we end up with two linearly independent bounded wave functions for E in the interior of a band.

A function χ(k, x, t) satisfying properties (33)–(36) can be written in the form

χ(k, x, t) = 1 +
i

π

∫ k2

k1

f (q, x, t)

k − iq
dq +

i

π

∫ k2

k1

g(q, x, t)

k + iq
dq, (39)

for some functions f (q, x, t) and g(q, x, t) defined for q ∈ [k1, k2]. Plugging this spectral representation

into (34) and (35), we obtain the following system of singular integral equations on f and g for p ∈ [k1, k2]:

f (p, x, t) +
R1(p)

π
e−2px+8p3t

[∫ k2

k1

f (q, x, t)

p + q
dq + –

∫ k2

k1

g(q, x, t)

p − q
dq

]
= R1(p)e−2px+8p3t , (40)

g(p, x, t) +
R2(p)

π
e2px−8p3t

[
–

∫ k2

k1

f (q, x, t)

p − q
dq +

∫ k2

k1

g(q, x, t)

p + q
dq

]
= −R2(p)e2px−8p3t . (41)

The corresponding solution of the KdV equation is equal to

u(x, t) =
2

π

d

dx

∫ k2

k1

[
f (q, x, t) + g(q, x, t)

]
dq. (42)

3. Symmetric primitive potentials

In this section, we show how to solve equations (40) and (41) analytically as Taylor series in the case

when R1 = R2. Suppose that

R1(p) = R2(p) = R(p). (43)
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ON SYMMETRIC PRIMITIVE POTENTIALS 11

In this case, g(p, x, t) = −f (p, −x, −t) and Eqs. (40) and (41) reduce to the single equation for all

p ∈ [k1, k2]:

f (p, x, t) +
R(p)

π
e−2px+8p3t

[∫ k2

k1

f (q, x, t)

p + q
dq − –

∫ k2

k1

f (q, −x, −t)

p − q
dq

]
= R(p)e−2px+8p3t . (44)

The corresponding primitive solution u(x, t) of the KdV equation

u(x, t) =
2

π

d

dx

∫ k2

k1

[
f (q, x, t) − f (q, −x, −t)

]
dq (45)

satisfies the symmetry condition

u(−x, −t) = u(x, t). (46)

In particular, the potential u(x) = u(x, 0) at t = 0 is symmetric:

u(−x) = u(x). (47)

Figures 1 and 2 show some examples of primitive solutions computed in this manner.

Remark 11 We emphasize that, in order for a primitive potential to be symmetric, it is sufficient but not

necessary for the dressing functions R1 and R2 to be equal.

Fig. 1. Symmetric primitive potentials u(x) determined by k1 = 0.5, k2 = 1 and various values of constant R(p) = R. These were

computed numerically by solving (44) using Gauss–Legendre quadrature.
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12 P. NABELEK ET AL.

Fig. 2. Symmetric primitive potential solutions u(x, t) to the KdV equation determined by k1 = 0.125, k2 = 1 and various values

of constant R(p) = R. The top plot shows the primitive potential solutions determined by R = 100, and the bottom plot shows the

primitive potential solution determined by R = 0.01. These were computed numerically by solving (44) using Gauss–Legendre

quadrature.

We now denote f (p, x) = f (p, x, 0) and set t = 0 in Eq. (44):

e2pxf (p, x) +
R(p)

π

[∫ k2

k1

f (q, x)

p + q
dq − –

∫ k2

k1

f (q, −x)

p − q
dq

]
= R(p), p ∈ [k1, k2]. (48)

We show that this equation can be solved analytically. Introduce the variable s = p2 and expand f (p, x)

as a Taylor series in x, separating the even and odd coefficients in the following way:

f (p, x) =
∞∑

k=0

1

(2k)!
x2kfk(s) +

∞∑

k=0

1

(2k + 1)!
x2k+1

√
shk(s), s = p2. (49)

Plugging this into (48) and collecting powers of x, we obtain the following system of equations on fk(s)

and hk(s), where k is a non-negative integer and δ is the Kronecker delta:

fk(s) + R(
√

s)H[fk](s) = R(
√

s)δ0k −
k−1∑

i=0

(
2k

2i

)
22k−2isk−ifi(s) −

k−1∑

j=0

(
2k

2j + 1

)
22k−2j−1sk−jhj(s), (50)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/in
te

g
ra

b
le

s
y
s
te

m
s
/a

rtic
le

-a
b
s
tra

c
t/4

/1
/x

y
z
0
0
6
/5

5
4
3
0
6
9
 b

y
 g

u
e
s
t o

n
 0

7
 A

u
g
u
s
t 2

0
1
9



ON SYMMETRIC PRIMITIVE POTENTIALS 13

hk(s) − R(
√

s)H[hk](s) = −
k∑

i=0

(
2k + 1

2i

)
22k−2i+1sk−ifi(s) −

k−1∑

j=0

(
2k + 1

2j + 1

)
22k−2jsk−jhj(s). (51)

Here, H is the Hilbert transform on the interval [k2
1 , k2

2 ]:

H[ψ(s)] =
1

π
–

∫ k2
2

k2
1

ψ(s′)

s′ − s
ds′. (52)

The corresponding primitive potential is given by

u(x) =
2

π

∞∑

k=0

x2k

(2k)!

∫ k2
2

k2
1

hk(s
′)ds′. (53)

Equations (50) and (51) can be solved recursively for fk and hk provided that we know how to invert the

operators 1 ± R(
√

s)H . This can be done explicitly using the following proposition.

Remark 12 Our method for computing the coefficients of the Taylor series in x around x = 0 of a

symmetric primitive potential u(x) is easily generalized to compute the Taylor coefficients for the series

in both x and t around (x, t) = (0, 0) of the corresponding solution u(x, t) of the KdV equation. However,

including the t-dependence in the construction does not add much additional insight, and the analogue of

the iterative system (50)–(51) becomes notationally complicated. We outline this generalization below

and leave further details to the reader.

First, we multiply both sides of (44) by e2px−8p3t . We then differentiate both sides of the resulting

integral equation by ∂k
x ∂

ℓ
t to derive an integral equation for f (k,ℓ)(p, 0, 0), with an inhomogenous term

involving lower order derivatives of f (p, 0, 0). Substituting p2 = s as before, we obtain a system of

integral equations for fkℓ(s) = f (k,ℓ)(
√

s, 0, 0) when k + ℓ is even and for hkℓ(s) = f (k,ℓ)(
√

s, 0, 0)/
√

s

when k + ℓ is odd. These are analogous to the system (50) and (51) for hk and fk . We then solve the

equations for fkℓ and hkℓ inductively as follows: we proceed in order of increasing k + ℓ, and along each

diagonal k + ℓ = n we compute in the following order (k, ℓ) = (0, n), (n, 0), (1, n − 1), (n − 1, 1), . . .

Proposition 13 Let α(s) be a Hölder-continuous function on the interval [k2
1 , k2

2 ] such that |α(s)| < 1/2

for all s ∈ [k2
1 , k2

2 ]. The integral operator Lα defined by

Lα[ψ(s)] = ψ(s) + tan(πα(s))H[ψ(s)] (54)

has a unique bounded inverse as an operator on Lp(R) for p > 1 and p 	= 2 given by

L−1
α [ϕ(s)] = cos2(πα(s))ϕ(s) − sin(πα(s))e−πH[α(s)]H[cos(πα(s))eπH[α(s)]ϕ(s)]. (55)

If α is constant, then L−1
α can be written as

L−1
α [ϕ(s)] = cos2(πα)ϕ(s) − sin(πα) cos(πα)

(
s − k2

1

k2
2 − s

)α

H

[(
k2

2 − s

s − k2
1

)α

ϕ(s)

]
. (56)
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14 P. NABELEK ET AL.

Proof. We will begin by deriving the explicit representation of the inverse operator. The singular integral

equation Lα[ψ(s)] = ϕ(s) takes the form

ψ(s) −
tan(πα(s))

π
–

∫ k2
2

k2
1

ψ(r)

s − r
dr = ϕ(s). (57)

We invert this equation to express ψ in terms of ϕ by reformulating it as an inhomogeneous Riemann–

Hilbert problem. The function �(s) defined by

�(s) =
1

π

∫ k2
2

k2
1

ψ(r)

s − r
dr

is holomorphic in s ∈ C \ [k2
1 , k2

2 ]. The boundary values of � from the right and the left for s ∈ [k2
1 , k2

2 ]
satisfy

i

2
(�+(s) − �−(s)) = ψ(s),

1

2
(�+(s) + �−(s)) =

1

π
–

∫ k2
2

k2
1

ψ(r)

s − r
dr. (58)

The integral equation (57) is then equivalent to the Privalov problem

�+(s) − e−2iπα(s)�−(s) = −2i cos(πα(s))e−iπα(s)ϕ(s), (59)

where � is normalized by the asymptotic behaviour �(s) → 0 as s → ∞.

To be able to apply the Plemelj formula to solve the Privalov problem (59), we first need to remove

the multiplicative factor in front of �−. We do this by looking for � in the form �(s) = 	(s)�(s). Here

the functions 	(s) and �(s) are holomorphic in C \ [k2
1 , k2

2 ], and satisfy the following conditions.

The function 	(s) satisfies the corresponding homogeneous Riemann–Hilbert problem

	+(s) = e−2iπα(s)	−(s)

and has the asymptotic behaviour 	(s) → 1 as s → ∞. Such a 	(s) is given by

	(s) = exp

(∫ k2
2

k2
1

α(r)

s − r
dr

)
.

The boundary values of 	 are

	±(s) = exp(−πH[α(s)] ∓ iπα(s)) (60)

for s ∈ [k2
1 , k2

2 ]. Note that 	 → 	−1 under the transformation α → −α.

The function �(s) satisfies the jump condition

�+(s) − �−(s) = cos(πα(s))e−iπα(s) −2iϕ(s)

	+(s)
= −2i cos(πα(s))eπH[α(s)]ϕ(s)
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ON SYMMETRIC PRIMITIVE POTENTIALS 15

for s ∈ [k2
1 , k2

2 ] and has the asymptotic behaviour �(s) → 0 as s → ∞. By the Plemelj formula, �(s) is

given by

�(s) =
1

π

∫ k2
2

k2
1

cos(πα(r))eπH[α(r)]ϕ(r)

s − r
dr = H[cos(πα(s))eπH[α(s)]ϕ(s)].

The boundary values of � are

�±(s) = H[cos(πα(s))eπH[α(s)]ϕ(s)] ∓ i cos(πα(s))eπH[α(s)]ϕ(s) (61)

for s ∈ [k2
1 , k2

2 ].

We now evaluate ψ(s) using (58), (60) and (61):

ψ(s) =
i

2
(�+(s) − �−(s)) =

i

2
(	+(s)�+(s) − 	−(s)�−(s))

= cos2(πα(s))ϕ(s) − sin(πα(s))e−πH[α(s)]H[cos(πα(s))eπH[α(s)]ϕ(s)],

proving the proposition. The result for constant α comes from the well-known fact that

πH[1] = log |s − k2
2 | − log |s − k2

1 |. (62)

We now show that the inverse operator L−1
α exists as a bounded operator on Lp(R) for p > 1 and

p 	= 2 using the bounded inverse theorem. We use results from [9] on the operator H . In particular, we

use the following facts:

• The operator H is a skew-adjoint operator with adjoint −H for p > 1 and p 	= 2.

• For 1 < p < 2, H is a bounded Fredholm operator on Lp(R) with non-trivial one-dimensional null

space.

• For p > 2, H is a bounded Fredholm operator on Lp(R) with trivial null space.

• For p = 2, H is a bounded operator with trivial null space on L2(R) but is not Fredholm.

Since H is skew-adjoint and bounded, so is tan(πα(s))H . Suppose p > 1 and p 	= 2. Since Lα is the sum

of bounded operators on Lp(R), it is also bounded. The operator Lα is the sum of the identity I and a

skew-adjoint operator, so the spectrum of Lα is contained in 1 + iR; in particular, 0 is not in the spectrum

of Lα , so Lα is injective. It follows from the explicit formula for L−1
α that Lα is surjective. Since Lα is a

bijective and bounded operator on a Banach space, Lα is invertible with a bounded inverse by the bounded

inverse theorem. �

Using this proposition with α(s) = tan−1 R(
√

s)/π , we can recursively solve equations (50) and (51)

and obtain u(x) as a power series in x. We observe that this power series converges for all values of x.

Indeed, the coefficients in (50) and (51) are bounded by N k(2k)!/(k!2), where N = 4k2
2 , and the Hilbert

transform is a bounded operator on Lp([k2
1 , k2

2 ]) for all p > 1. The inverse operators L−1
α are also bounded

for p > 1 and p 	= 2. Therefore the norms of fk and hk grow as Mk(2k)!/(k!2) for some M. The Hölder
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16 P. NABELEK ET AL.

inequality for Hölder conjugates p, q > 1 with p, q 	= 2 can then be applied to bound the absolute values

of the Taylor coefficients in (53) to show that the Taylor coefficients grow as Mk(2k)!/(k!2) for some M.

Therefore, the power series (53) converges for all x.

4. The case of constant R

As an example, we calculate the first two coefficients of u(x) as a Taylor series in the case when R is a

constant positive function. Let α = tan−1(R)/π , then 0 < α < 1/2. By Proposition 13, the operators

L±α[ψ(s)] = ψ(s) ± tan(πα)H[ψ(s)]

are inverted by

L−1
±α[ϕ(s)] = cos2(πα)ϕ(s) ∓ sin(πα) cos(πα)a±1(s)H[a∓1(s)ϕ(s)],

where the function

a(s) =
(

s − k2
1

k2
2 − s

)α

(63)

is continuous on [k2
1 , k2

2) and has an integrable singularity at s = k2
2 . The equations (50) and (51)

determining f0, h0, f1, h1 are

Lα[f0(s)] = tan(πα),

L−α[h0(s)] = −2f0(s),

Lα[f1(s)] = −4sh0(s) − 4sf0(s),

L−α[h1(s)] = −6f1(s) − 12sh0(s) − 8sf0(s).

We compute

L−1
α [1] = cos(πα)a(s),

L−1
−α[a(s)] =

1

2
(a(s) + a−1(s)),

L−1
α [sa−1(s)] =

s

2
(a(s) + a−1(s)) − α(k2

2 − k2
1)a(s),

L−1
−α[sa(s)] =

s

2
(a(s) + a−1(s)) − α(k2

2 − k2
1)a

−1(s).

We therefore obtain

f0(s) = tan(πα)L−1
α [1] = sin(πα)a(s),

h0(s) = −2 sin(πα)L−1
−α[a(s)] = − sin(πα)(a(s) + a−1(s)),
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ON SYMMETRIC PRIMITIVE POTENTIALS 17

f1(s) = 4 sin(πα)L−1
α [sa−1(s)] = 2 sin(πα)s(a(s) + a−1(s)) − 4α sin(πα)(k2

2 − k2
1)a(s),

h1(s) = 24(k2
2 − k2

1)α sin(πα)L−1
−α[a(s)] − 8 sin(πα)L−1

−α[sa(s)]

= (k2
2 − k2

1)α sin(πα)(12a(s) + 20a−1(s)) − 4 sin(πα)s(a(s) + a−1(s)).

The integrals

∫ k2
2

k2
1

a(s)ds =
∫ k2

2

k2
1

a−1(s)ds =
π(k2

2 − k2
1)α

sin(πα)
,

∫ k2
2

k2
1

sa(s)ds =
πα

2 sin(πα)
((k4

2 − k4
1) + α(k2

2 − k2
1)

2),

∫ k2
2

k2
1

sa−1(s)dp =
πα

2 sin(πα)
((k4

2 − k4
1) − α(k2

2 − k2
1)

2),

allow us to compute

2

π

∫ k2
2

k2
1

h0(s)ds = −4(k2
2 − k2

1)α,

2

π

∫ k2
2

k2
1

h1(s)ds = 8(k2
2 − k2

1)α(4(k2
2 − k2

1)α − (k2
2 + k2

1)),

therefore by Equation (53) we get

u(x) = −4α(k2
2 − k2

1) + 4α(k2
2 − k2

1)(4α(k2
2 − k2

1) − (k2
2 + k2

1))x
2 + O(x4). (64)

We know that R = 1 (hence α = 1/4) and k1 = 0 produces the exact solution u(x) = −k2
2 , and indeed

by the above formula we get u0 = −k2
2 and u1 = 0 in this case.

Formula (64) has some interesting implications. In the limit as R → 0, we observe that u(0) → 0

and u′′(0) → 0, which is expected, since u(x) becomes trivial. In the limit as R → ∞, we observe that

u(0) → −2(k2
2 − k2

1) and u′′(0) → 4(k2
2 − k2

1)(k
2
2 − 3k2

1). If k2
2 < 3k2

1 we see that in fact u′′(0) is negative

for all R, while if k2
2 > 3k2

1 then u′′(0) is positive for sufficiently large R.

5. One-zone symmetric potential

In this section, we show that the dressing R1 = R2 = 1 on the interval [k1, k2] produces the elliptic

one-gap potential

u(x) = 2℘(x + iω′ − ω) + e3. (65)

Previously, in the articles [3, 4], the second and third authors showed that this potential arises from the

dressing

R1(p) =
1

R2(p)
=

√
(p − k1)(p + k2)

(k2 − p)(p + k1)
. (66)
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Our new result uses the notation and calculations of [3, 4], but relies on the results of Chapter 4.

First, we observe that if

R2(p) = 1/R1(p),

then equations (34) and (35) reduce to

χ+(ip, x, t) = iR1(p)e−2px+8p3tχ+(−ip, x, t), χ−(ip, x, t) = −iR1(p)e−2px+8p3tχ−(−ip, x, t),

for p ∈ [k1, k2]. When R1(p) = 1 and t = 0, the contour problem for χ(k, x) = χ(k, x, 0) is

χ+(ip, x) = ie−2pxχ+(−ip, x), χ−(ip, x) = −ie−2pxχ−(−ip, x), p ∈ [k1, k2]. (67)

Our goal is to find the function χ satisfying (67). This can in principle be done using the inductive

procedure described in Chapter 4 with R = 1 and α = 1/4. However, we will need only the first Taylor

coefficient. Indeed, if we set x = 0, then

f (p, 0) = f0(p) = sin(πα)a(s) =
1

√
2

(
s − k2

1

k2
2 − s

)1/4

.

Hence, we find that the function

ξ(k) = χ(k, 0) = 1 +
i

π

∫ k2

k1

f (q, 0)

k − iq
dq −

i

π

∫ k2

k1

f (q, 0)

k + iq
dq =

(
k2 + k2

1

k2 + k2
2

)1/4

satisfies equation (67) with x = 0:

ξ+(ip) = iξ+(−ip), ξ−(ip) = −iξ−(−ip), p ∈ [k1, k2]. (68)

We now look for a solution of (67) in the form χ(k, x) = ξ(k)χ1(k, x), where χ1(k, x) satisfies the

condition

χ+
1 (ip, x) = e−2pxχ+

1 (−ip, x), χ−
2 (ip, x) = e−2pxχ−

2 (−ip, x), p ∈ [k1, k2]. (69)

Such a function has already been found in [2, 3]. Let e1, e2, e3 be defined by the equations

k2
1 = e2 − e3, k2

2 = e1 − e3, e1 + e2 + e3 = 0.

Let ℘(z) = ℘(z|ω, ω′) be the Weierstrass function with half-periods ω and ω′, where ω is real and ω′ is

purely imaginary, such that

e1 = ℘(ω), e2 = ℘(ω + iω′), e3 = ℘(iω′).

We introduce, as in [2, 3], the variable z via the relation

k2 = e3 − ℘(z). (70)
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ON SYMMETRIC PRIMITIVE POTENTIALS 19

This relation expresses the complex plane C with cuts [ik1, ik2] and [−ik1, −ik2] along the imaginary axis

as a double cover of the period rectangle of ℘. The Schrödinger equation (1) with potential given by (65)

is the Lamé equation

ϕ′′ − [2℘(x − ω − iω′) + ℘(z)]ϕ = 0. (71)

The Lamé equation has a solution

ϕ(x, z) =
σ(x − ω − iω′ + z)σ (ω + iω′)

σ (x − ω − iω′)σ (ω + iω′ − z)
e−ζ(z)x, (72)

which has an essential singularity ϕ(x, z) ∼ e−x/z near the point z = 0 (corresponding to k = ∞).

Therefore, the function

χ1(k, x) = ϕ(x, z)e−ikx = ϕ(x, z)e−ix/ sn z (73)

tends to 1 as k → ∞. It is easy to check that χ1(k, x) satisfies the contour problem (69). Putting everything

together, we obtain the following result.

Proposition 14 Let k2 > k1 > 0. Then the function

χ(k, x) =
(

k2 + k2
1

k2 + k2
2

)1/4

ϕ(x, z)e−ikx, k2 = e3 − ℘(z) (74)

satisfies conditions (33)–(37) with R1 = R2 = 1 and t = 0. The potential u(x) defined by (38) is the

elliptic one-gap potential (65).

In Section 2.5, we observed that an N-soliton potential is described using the dressing method in 2N

different ways. Since primitive potentials are limits of N-soliton potentials, it is also true that a primitive

potential can be described using the dressing method in multiple ways, in other words by different pairs

of functions R1 and R2. Here, we observe an example of this behaviour: the elliptic one-gap potential can

be constructed using constant dressing functions R1 = R2 = 1, or using the dressing (66).
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